

MATHEMATICS HIGHER LEVEL PAPER 3 – SERIES AND DIFFERENTIAL EQUATIONS

Monday 7 May 2012 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the *Mathematics HL and Further Mathematics SL information booklet* is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 6]

Use L'Hôpital's Rule to find $\lim_{x\to 0} \frac{e^x - 1 - x \cos x}{\sin^2 x}$.

2. [Maximum mark: 21]

Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{1+x}$, where x > -1 and y = 1 when x = 0.

(a) Use Euler's method, with a step length of 0.1, to find an approximate value of y when x = 0.5. [7 marks]

(b) (i) Show that
$$\frac{d^2 y}{dx^2} = \frac{2y^3 - y^2}{(1+x)^2}$$

(ii) Hence find the Maclaurin series for y, up to and including the term in x^2 . [8 marks]

(ii) Find the value of a for which $y \to \infty$ as $x \to a$. [6 marks]

3. [Maximum mark: 7]

Find the general solution of the differential equation $t \frac{dy}{dt} = \cos t - 2y$, for t > 0.

2212-7208

4. [*Maximum mark:* 15]

The sequence $\{u_n\}$ is defined by $u_n = \frac{3n+2}{2n-1}$, for $n \in \mathbb{Z}^+$.

- (a) Show that the sequence converges to a limit L, the value of which should be stated. [3 marks]
- (b) Find the least value of the integer N such that $|u_n L| < \varepsilon$, for all n > N where

(i)
$$\varepsilon = 0.1;$$

(ii)
$$\varepsilon = 0.00001.$$
 [4 marks]

(c) For each of the sequences
$$\left\{\frac{u_n}{n}\right\}$$
, $\left\{\frac{1}{2u_n-2}\right\}$ and $\left\{(-1)^n u_n\right\}$, determine whether or not it converges. [6 marks]

(d) Prove that the series
$$\sum_{n=1}^{\infty} (u_n - L)$$
 diverges. [2 marks]

5. [Maximum mark: 11]

- (a) Find the set of values of k for which the improper integral $\int_{2}^{\infty} \frac{dx}{x(\ln x)^{k}}$ converges. [6 marks]
- (b) Show that the series $\sum_{r=2}^{\infty} \frac{(-1)^r}{r \ln r}$ is convergent but not absolutely convergent. [5 marks]